This Question Paper contains 12 printed pages. (Section - A, B, C & D)

Sl.No.

12 (E)

(MAY, 2021) (Old Course)

Time: 3 Hours

[Maximum Marks: 80

Instructions:

- 1) Write in a clear legible handwriting.
- 2) This question paper has four Sections A, B, C & D and Question Numbers from 1 to 53.
- 3) The numbers to the right represent the marks of the question.
- 4) Draw neat diagrams wherever necessary. Take perfect measurement for construction.
- 5) New sections should be written in a new page. Write the answers in numerical order.
- 6) Use of calculator is not permitted.

SECTION - A

- Answer the following as per the given instructions (Questions 1 to 24) (Each carries 1 mark).
- Answer true or false (Questions 1 to 4):
 - 1) $\sqrt{5}$ is an irrational number. [1]
 - 2) $p(x) = 5x^2 + 8x + 3$ has degree of the polynomial as 3. [1]

- 3) If $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$, then the equations are consistent. [1]
- 4) If D < 0 then the roots of a quadratic equation are real and equal. [1]
- Select the appropriate answer and fill up the blanks (Questions 5 to 10).

6) If
$$2x + 3y = 7$$
 and $3x + 2y = 3$ then $x - y =$ _____. [1]
 $(4, -4, 2, -2)$

- 7) The Discriminant of the equation $\sqrt{3}x^2 + 2x \sqrt{3} = 0$ is _____. [1] (4, 12, 16, 20)
- 8) Name of the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34 is _____. [1] (Fibonacci sequence, Parallel sequence, Finite sequence, None of the above)
- 9) ABC \leftrightarrow QRP is a similarity in \triangle ABC and \triangle PQR, $m \angle A = 50$ and $m \angle C = 70$ then $m \angle R =$ _____. [1] (50, 60, 70, 80)
- 10) The distance of A(x, y) from origin is _____. [1] $\left(x^2 + y^2, |x y|, |x + y|, \sqrt{x^2 + y^2}\right)$

Ans	swer the following in or	ne sentence, one wo	ord or in figure (Questi	ions 11 to 16).
11)	Who gave the general	formula to solve q	quadratic equations?	[1]
12)	If in an AP, $T_{25} - T_{20} =$	= 15 then find the co	ommon difference d.	[1]
13)	Areas of two similar to the triangles.		16. Find the ratio of the	
14)	If $\tan 5\theta \cdot \tan 4\theta = 1$, θ	is	$V_{1} = \frac{2X + 2X}{1} = W_{1}$	[1]
15)	Define secant of a circ	ele.		[1]
16)	In \triangle ABC, AB = 3, BC sides is	=4, AC $=5$, then rac	dius of the circle touching	ng all the three
Sele	ct the most appropriate	answer from the giv	ven alternatives. (Questi	ions 17 to 22):
17)	If θ is the measure of a	n acute angle and $$	$3\sin\theta = \cos\theta$, then θ	is[1]
	(A) 30	(B)	45	
	(C) 60	(D)	90	
18)	Mention the angle subt between 10:30 and 10		e hand of a clock on the	e circular dial
	(A) 28	(B)	35 (A	
	(C) 42	(D)	49	

- 19) The perimeter of a semicircle with diameter 2 cm is ____ cm. [1]
 - (A) $2+\pi$

(B) π

(C) $3 + \pi$

- (D) $\frac{\pi}{2}$
- 20) The formula to find the median M is _____. [1]
 - (A) $\frac{z+2\overline{x}}{3} = M$

(B) $\frac{z-2\overline{x}}{3} = M$

(C) $\frac{2z-\overline{x}}{3} = M$

- (D) $\frac{2z-2\overline{x}}{3} = M$
- 21) The probability of having 8 days in a week is _____. [1]
 - (A) 0

(B) 1

(C) 2

- (D) 3
- 22) The diameter of the base of a cone is 10 cm and slant height is 5 cm.

 Then the area of the base is _____ cm². [1]
 - (A) 5π

(B) 10π

(C) 25π

(D) 35π

■ Match the following: (Questions 23 to 24)

23)		Part - A		Part - B			
	1	T_n	(a)	a + nd - d			
			(b)	a-nd-d			

[1]

Part - A

Part - B

[1]

1

Mode

(a) $l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times C$ (b) $l + \left(\frac{f_1 - f_0}{f_1 - f_0 - 2f_2}\right) \times C$

SECTION - B

- Answer the following (Any 9) (Questions 25 to 36) (Each carries 2 marks). [18]
 - 25) Find g.c.d. (144, 610) using Euclid's algorithm and find l.c.m. (144, 610) using the relation $ab = \text{g.c.d.}(a, b) \times \text{l.c.m.}(a, b)$. [2]
 - 26) i) $\frac{18}{5^3}$ has _____ digits after decimal points.
 - ii) If p, q, r are distinct primes, their l.c.m. is _____.

[2]

- 27) Find the zeros of the quadratic polynomial $p(x) = x^2 5x 6$.
- [2]

28) Find the sum of the given A.P.

[2]

$$25 + 21 + 17 + 13 + \dots + (-51)$$

- **29)** Is 0 a term of A.P. 200, 196, 192, ..., -200? If yes, what is its order?
- 30) Find the value of [2]

$$\frac{5\sin^2 30^\circ + \sin^2 45^\circ - 4\tan^2 30^\circ}{2\sin 30^\circ \cos 30^\circ + \cot 45^\circ}$$

- 31) Radii of two concentric circles are 41 and 9. A chord of the circle with larger radius touches the circle with smaller radius. Find the length of the chord. [2]
- 32) P is in the exterior of a circle at distance 34 from the centre O. A line through P touches the circle at Q. PQ = 16, find the diameter of the circle. [2]
- 33) Draw the figures for the intersection of a line and circle in the same plane [2]

6

Case i)
$$l \cap S = \emptyset$$

ii)
$$l \cap S = \{p\}$$

Where S is the set of points on the circle and l is the line.

- 34) How many maximum litres of petrol can be contained in a cylindrical tank with hemispherical ends having radius 0.42 m and total height 3.84 m? [2]
- 35) A survey regarding the weights (in kg) of 45 students of class X of a school was conducted and the following data was obtained. Find the median of this data.

 [2]

Weight (in kg)	20-25	25-30	30-35	35-40	40-45	45-50	50-55
Number of students	2	5	8	10	7	10	3

- 36) A card is selected at random from well-shuffled pack of 52 cards. Find the probability that the selected card is[2]
 - i) a face card

ii) of diamond

iii) not an ace

iv) is an ace of black colour

SECTION-C

- Answer any six questions with calculations (Questions 37 to 45) (Each carries 3 marks).
 - 37) Find the zeros, the sum and the product of zeros of $p(x) = x^2 + 9x + 14$. [3]
 - 38) Obtain a quadratic polynomial $p(x) = ax^2 + bx + c$, where sum of zeros is $\frac{8}{5}$

and product of zeros is
$$\frac{3}{5}$$
, $(a < 0)$.

- 39) The ratio of present ages of a mother and her daughter is 8:3. After 5 years, the ratio of their ages will be 9:4. Find their present ages.[3]
- 40) If the roots of the quadratic equation $(k+1)x^2 2(k-1)x + 1 = 0$ are real and equal, find the value of k. [3]
- 41) Find the coordinates of the point which divides \overline{AB} in the ratio 2:3 from B. The coordinates of A and B are (3, -6) and (-2, -1) respectively. [3]
- 42) D (3, 2), E (5, 6) and F (-1, 7) are the mid-points of the sides BC, CA and AB of ΔABC respectively find the coordinates of A, B and C.
 [3]
- 43) The radius of a field in the form of a sector is 21 m. The cost of constructing a wall around the field is ₹ 1875 at the rate of ₹ 25 per meter. If it costs ₹ 10 per m² to till the field, what will be the cost of tilling the whole field? [3]
- 44) Find the area of the minor segment whose chord subtends an angle of measure 120 and radius of the circle is 42 cm. [3]

- 45) A box contains 100 cards marked with numbers 1 to 100. If one card is drawn from the box, find the probability that it bears [3]
 - i) Single digit number
 - ii) Two digit number
 - iii) A perfect square

SECTION - D

- Answer any five questions with calculations (Questions 46 to 53) (Each carries 4 marks).
 - 46) Prove that: Areas of two similar triangles are proportional to squares of corresponding sides for acute angled triangles.[4]
 - 47) State Pythagoras Theorem. Prove Pythagoras Theorem for a ΔPQR right angled at R.[4]
 - 48) Divide a 6 cm line-segment into three congruent parts. Write the steps of construction. [4]
 - 49) Draw a circle of radius 3 cm. From a point 6 cm away from the centre, construct two tangents to the circle from this point. Measure them.[4]

[4]

- 50) A string of a kite is 100 m long and it makes an angle of measure 60° with the horizontal. Find the height of the kite, assuming that there is no slack in the string.[4]
- 51) The radius of a conical tent is 4 m and slant height is 5 m. How many meters of canvas of width 125 cm will be used to prepare 12 tents? If the cost of canvas is
 ₹ 20 per meter, then what is the total cost of 12 tents? (π = 3.14)
 [4]
- 52) The mode of the following frequency distribution of 165 observations is 34.5.Find the value of a and b.[4]

Class	5-14	14-23	23-32	32-41	41-50	50-59	59-68
Frequency	5	11 signam	a	53	b	16	10

53) Find the mean of the data given below:

Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Frequency	4	8	3	20	3	4	8

 $\mathfrak{H}\mathfrak{H}\mathfrak{H}$